10 research outputs found

    Gravity-Inspired Graph Autoencoders for Directed Link Prediction

    Full text link
    Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as powerful node embedding methods. In particular, graph AE and VAE were successfully leveraged to tackle the challenging link prediction problem, aiming at figuring out whether some pairs of nodes from a graph are connected by unobserved edges. However, these models focus on undirected graphs and therefore ignore the potential direction of the link, which is limiting for numerous real-life applications. In this paper, we extend the graph AE and VAE frameworks to address link prediction in directed graphs. We present a new gravity-inspired decoder scheme that can effectively reconstruct directed graphs from a node embedding. We empirically evaluate our method on three different directed link prediction tasks, for which standard graph AE and VAE perform poorly. We achieve competitive results on three real-world graphs, outperforming several popular baselines.Comment: ACM International Conference on Information and Knowledge Management (CIKM 2019

    Etude de Dégénérescence de Graph appliqué à l'Apprentissage Automatique Avancé et Résultats Théoriques relatifs

    No full text
    L'extraction de sous-structures significatives a toujours Ă©tĂ© un Ă©lĂ©ment clĂ© de l’étude des graphes. Dans le cadre de l'apprentissage automatique, supervisĂ© ou non, ainsi que dans l'analyse thĂ©orique des graphes, trouver des dĂ©compositions spĂ©cifiques et des sous-graphes denses est primordial dans de nombreuses applications comme entre autres la biologie ou les rĂ©seaux sociaux.Dans cette thĂšse, nous cherchons Ă  Ă©tudier la dĂ©gĂ©nĂ©rescence de graphe, en partant d'un point de vue thĂ©orique, et en nous appuyant sur nos rĂ©sultats pour trouver les dĂ©compositions les plus adaptĂ©es aux tĂąches Ă  accomplir. C'est pourquoi, dans la premiĂšre partie de la thĂšse, nous travaillons sur des rĂ©sultats structurels des graphes Ă  arĂȘte-admissibilitĂ© bornĂ©e, prouvant que de tels graphes peuvent ĂȘtre reconstruits en agrĂ©geant des graphes Ă  degrĂ© d’arĂȘte quasi-bornĂ©. Nous fournissons Ă©galement des garanties de complexitĂ© de calcul pour les diffĂ©rentes dĂ©compositions de la dĂ©gĂ©nĂ©rescence, c'est-Ă -dire si elles sont NP-complĂštes ou polynomiales, selon la longueur des chemins sur lesquels la dĂ©gĂ©nĂ©rescence donnĂ©e est dĂ©finie.Dans la deuxiĂšme partie, nous unifions les cadres de dĂ©gĂ©nĂ©rescence et d'admissibilitĂ© en fonction du degrĂ© et de la connectivitĂ©. Dans ces cadres, nous choisissons les plus expressifs, d'une part, et les plus efficaces en termes de calcul d'autre part, Ă  savoir la dĂ©gĂ©nĂ©rescence 1-arĂȘte-connectivitĂ© pour expĂ©rimenter des tĂąches de dĂ©gĂ©nĂ©rescence standard, telle que la recherche d’influenceurs.Suite aux rĂ©sultats prĂ©cĂ©dents qui se sont avĂ©rĂ©s peu performants, nous revenons Ă  l'utilisation du k-core mais en l’intĂ©grant dans un cadre supervisĂ©, i.e. les noyaux de graphes. Ainsi, en fournissant un cadre gĂ©nĂ©ral appelĂ© core-kernel, nous utilisons la dĂ©composition k-core comme Ă©tape de prĂ©traitement pour le noyau et appliquons ce dernier sur chaque sous-graphe obtenu par la dĂ©composition pour comparaison. Nous sommes en mesure d'obtenir des performances Ă  l’état de l’art sur la classification des graphes au prix d’une lĂ©gĂšre augmentation du coĂ»t de calcul.Enfin, nous concevons un nouveau cadre de dĂ©gĂ©nĂ©rescence de degrĂ© s’appliquant simultanĂ©ment pour les hypergraphes et les graphes biparties, dans la mesure oĂč ces derniers sont les graphes d’incidence des hypergraphes. Cette dĂ©composition est ensuite appliquĂ©e directement Ă  des architectures de rĂ©seaux de neurones prĂ©-entrainĂ©s Ă©tant donnĂ© qu'elles induisent des graphes biparties et utilisent le core d'appartenance des neurones pour rĂ©initialiser les poids du rĂ©seaux. Cette mĂ©thode est non seulement plus performant que les techniques d'initialisation de l’état de l’art, mais il est Ă©galement applicable Ă  toute paire de couches de convolution et linĂ©aires, et donc adaptable Ă  tout type d'architecture.Extracting Meaningful substructures from graphs has always been a key part in graph studies. In machine learning frameworks, supervised or unsupervised, as well as in theoretical graph analysis, finding dense subgraphs and specific decompositions is primordial in many social and biological applications among many others.In this thesis we aim at studying graph degeneracy, starting from a theoretical point of view, and building upon our results to find the most suited decompositions for the tasks at hand.Hence the first part of the thesis we work on structural results in graphs with bounded edge admissibility, proving that such graphs can be reconstructed by aggregating graphs with almost-bounded-edge-degree. We also provide computational complexity guarantees for the different degeneracy decompositions, i.e. if they are NP-complete or polynomial, depending on the length of the paths on which the given degeneracy is defined.In the second part we unify the degeneracy and admissibility frameworks based on degree and connectivity. Within those frameworks we pick the most expressive, on the one hand, and computationally efficient on the other hand, namely the 1-edge-connectivity degeneracy, to experiment on standard degeneracy tasks, such as finding influential spreaders.Following the previous results that proved to perform poorly we go back to using the k-core but plugging it in a supervised framework, i.e. graph kernels. Thus providing a general framework named core-kernel, we use the k-core decomposition as a preprocessing step for the kernel and apply the latter on every subgraph obtained by the decomposition for comparison. We are able to achieve state-of-the-art performance on graph classification for a small computational cost trade-off.Finally we design a novel degree degeneracy framework for hypergraphs and simultaneously on bipartite graphs as they are hypergraphs incidence graph. This decomposition is then applied directly to pretrained neural network architectures as they induce bipartite graphs and use the coreness of the neurons to re-initialize the neural network weights. This framework not only outperforms state-of-the-art initialization techniques but is also applicable to any pair of layers convolutional and linear thus being applicable however needed to any type of architecture

    Graph Degeneracy Studies for Advanced Learning Methods on Graphs and Theoretical Results

    No full text
    Extracting Meaningful substructures from graphs has always been a key part in graph studies. In machine learning frameworks, supervised or unsupervised, as well as in theoretical graph analysis, finding dense subgraphs and specific decompositions is primordial in many social and biological applications among many others.In this thesis we aim at studying graph degeneracy, starting from a theoretical point of view, and building upon our results to find the most suited decompositions for the tasks at hand.Hence the first part of the thesis we work on structural results in graphs with bounded edge admissibility, proving that such graphs can be reconstructed by aggregating graphs with almost-bounded-edge-degree. We also provide computational complexity guarantees for the different degeneracy decompositions, i.e. if they are NP-complete or polynomial, depending on the length of the paths on which the given degeneracy is defined.In the second part we unify the degeneracy and admissibility frameworks based on degree and connectivity. Within those frameworks we pick the most expressive, on the one hand, and computationally efficient on the other hand, namely the 1-edge-connectivity degeneracy, to experiment on standard degeneracy tasks, such as finding influential spreaders.Following the previous results that proved to perform poorly we go back to using the k-core but plugging it in a supervised framework, i.e. graph kernels. Thus providing a general framework named core-kernel, we use the k-core decomposition as a preprocessing step for the kernel and apply the latter on every subgraph obtained by the decomposition for comparison. We are able to achieve state-of-the-art performance on graph classification for a small computational cost trade-off.Finally we design a novel degree degeneracy framework for hypergraphs and simultaneously on bipartite graphs as they are hypergraphs incidence graph. This decomposition is then applied directly to pretrained neural network architectures as they induce bipartite graphs and use the coreness of the neurons to re-initialize the neural network weights. This framework not only outperforms state-of-the-art initialization techniques but is also applicable to any pair of layers convolutional and linear thus being applicable however needed to any type of architecture.L'extraction de sous-structures significatives a toujours Ă©tĂ© un Ă©lĂ©ment clĂ© de l’étude des graphes. Dans le cadre de l'apprentissage automatique, supervisĂ© ou non, ainsi que dans l'analyse thĂ©orique des graphes, trouver des dĂ©compositions spĂ©cifiques et des sous-graphes denses est primordial dans de nombreuses applications comme entre autres la biologie ou les rĂ©seaux sociaux.Dans cette thĂšse, nous cherchons Ă  Ă©tudier la dĂ©gĂ©nĂ©rescence de graphe, en partant d'un point de vue thĂ©orique, et en nous appuyant sur nos rĂ©sultats pour trouver les dĂ©compositions les plus adaptĂ©es aux tĂąches Ă  accomplir. C'est pourquoi, dans la premiĂšre partie de la thĂšse, nous travaillons sur des rĂ©sultats structurels des graphes Ă  arĂȘte-admissibilitĂ© bornĂ©e, prouvant que de tels graphes peuvent ĂȘtre reconstruits en agrĂ©geant des graphes Ă  degrĂ© d’arĂȘte quasi-bornĂ©. Nous fournissons Ă©galement des garanties de complexitĂ© de calcul pour les diffĂ©rentes dĂ©compositions de la dĂ©gĂ©nĂ©rescence, c'est-Ă -dire si elles sont NP-complĂštes ou polynomiales, selon la longueur des chemins sur lesquels la dĂ©gĂ©nĂ©rescence donnĂ©e est dĂ©finie.Dans la deuxiĂšme partie, nous unifions les cadres de dĂ©gĂ©nĂ©rescence et d'admissibilitĂ© en fonction du degrĂ© et de la connectivitĂ©. Dans ces cadres, nous choisissons les plus expressifs, d'une part, et les plus efficaces en termes de calcul d'autre part, Ă  savoir la dĂ©gĂ©nĂ©rescence 1-arĂȘte-connectivitĂ© pour expĂ©rimenter des tĂąches de dĂ©gĂ©nĂ©rescence standard, telle que la recherche d’influenceurs.Suite aux rĂ©sultats prĂ©cĂ©dents qui se sont avĂ©rĂ©s peu performants, nous revenons Ă  l'utilisation du k-core mais en l’intĂ©grant dans un cadre supervisĂ©, i.e. les noyaux de graphes. Ainsi, en fournissant un cadre gĂ©nĂ©ral appelĂ© core-kernel, nous utilisons la dĂ©composition k-core comme Ă©tape de prĂ©traitement pour le noyau et appliquons ce dernier sur chaque sous-graphe obtenu par la dĂ©composition pour comparaison. Nous sommes en mesure d'obtenir des performances Ă  l’état de l’art sur la classification des graphes au prix d’une lĂ©gĂšre augmentation du coĂ»t de calcul.Enfin, nous concevons un nouveau cadre de dĂ©gĂ©nĂ©rescence de degrĂ© s’appliquant simultanĂ©ment pour les hypergraphes et les graphes biparties, dans la mesure oĂč ces derniers sont les graphes d’incidence des hypergraphes. Cette dĂ©composition est ensuite appliquĂ©e directement Ă  des architectures de rĂ©seaux de neurones prĂ©-entrainĂ©s Ă©tant donnĂ© qu'elles induisent des graphes biparties et utilisent le core d'appartenance des neurones pour rĂ©initialiser les poids du rĂ©seaux. Cette mĂ©thode est non seulement plus performant que les techniques d'initialisation de l’état de l’art, mais il est Ă©galement applicable Ă  toute paire de couches de convolution et linĂ©aires, et donc adaptable Ă  tout type d'architecture

    Edge degeneracy: Algorithmic and structural results

    No full text
    International audienceWe consider a cops and robber game where the cops are blocking edges of a graph, while the robber occupiesits vertices. At each round of the game, the cops choose some set of edges to block and right after the robber is obliged to move to another vertex traversing at most ss unblocked edges (ss can be seen as the speed of the robber).Both parts have complete knowledge of the opponent's movesand the cops win when they occupy all edges incident to the robbers position.We introduce the capture cost on GG against a robber of speed ss. This defines a hierarchy of invariants, namely ÎŽe1,ÎŽe2,
,ÎŽe∞\delta^{1}_{\rm e},\delta^{2}_{\rm e},\ldots,\delta^{\infty}_{\rm e}, where ÎŽe∞\delta^{\infty}_{\rm e} is an edge-analogue of the admissibility graph invariant, namely the {\em edge-admissibility} of a graph.We prove that the problem asking wether ÎŽes(G)≀k\delta^{s}_{\rm e}(G)\leq k, is polynomially solvable when s∈{1,2,∞}s\in \{1,2,\infty\} while, otherwise, it is {\sf NP}-complete.Our main result is a structural theorem for graphs of bounded edge-admissibility. We prove that every graph of edge-admissibility at most kk can be constructed using (≀k)(\leq k)-edge-sums, starting from graphs whose all vertices, except possibly from one, have degree at most kk. Our structural result is approximately tight in the sense that graphs generated by this construction always have edge-admissibility at most 2k−12k-1. Our proofs are based on a precise structural characterization of the graphs that do not contain Ξr\theta_{r} as an immersion, where Ξr\theta_{r} is the graph on two vertices and rr parallel edges

    Hcore-Init: Neural Network Initialization based on Graph Degeneracy

    No full text
    International audienceNeural networks have become a very popular tool for many machine learning tasks, as in recent years we witnessed many novel architectures, learning and optimization techniques for deep learning. Capitalizing on the fact that neural networks inherently constitute multipartite graphs among neuron layers, we aim to analyze directly their structure to extract meaningful information that can improve the learning process. To our knowledge graph mining techniques for enhancing learning in neural networks have not been thoroughly investigated. In this paper we propose an adapted version of the k-core structure for the complete weighted multipartite graph extracted from a deep learning architecture. As a multipartite graph is a combination of bipartite graphs, that are in turn the incidence graphs of hypergraphs, we design k-hypercore decomposition, the hypergraph analogue of k-core degeneracy. We applied k-hypercore to several neural network architectures, more specifically to convolutional neural networks and multilayer perceptrons for image recognition tasks after a very short pretraining. Then we used the information provided by the hypercore numbers of the neurons to re-initialize the weights of the neural network, thus biasing the gradient optimization scheme. Extensive experiments proved that k-hypercore outperforms the state-of-the-art initialization methods

    L2G2G: A scalable local-to-global network embedding with graph autoencoders

    No full text
    No abstract available

    GraKeL: A Graph Kernel Library in Python

    No full text
    International audienceThe problem of accurately measuring the similarity between graphs is at the core of many applications in a variety of disciplines. Graph kernels have recently emerged as a promising approach to this problem. There are now many kernels, each focusing on different structural aspects of graphs. Here, we present GraKeL, a library that unifies several graph kernels into a common framework. The library is written in Python and adheres to the scikit-learn interface. It is simple to use and can be naturally combined with scikit-learn's modules to build a complete machine learning pipeline for tasks such as graph classification and clustering. The code is BSD licensed and is available at: https://github.com/ysig/ GraKeL

    SaGess: Sampling Graph Denoising Diffusion Model for Scalable Graph Generation

    Full text link
    Over recent years, denoising diffusion generative models have come to be considered as state-of-the-art methods for synthetic data generation, especially in the case of generating images. These approaches have also proved successful in other applications such as tabular and graph data generation. However, due to computational complexity, to this date, the application of these techniques to graph data has been restricted to small graphs, such as those used in molecular modeling. In this paper, we propose SaGess, a discrete denoising diffusion approach, which is able to generate large real-world networks by augmenting a diffusion model (DiGress) with a generalized divide-and-conquer framework. The algorithm is capable of generating larger graphs by sampling a covering of subgraphs of the initial graph in order to train DiGress. SaGess then constructs a synthetic graph using the subgraphs that have been generated by DiGress. We evaluate the quality of the synthetic data sets against several competitor methods by comparing graph statistics between the original and synthetic samples, as well as evaluating the utility of the synthetic data set produced by using it to train a task-driven model, namely link prediction. In our experiments, SaGess, outperforms most of the one-shot state-of-the-art graph generating methods by a significant factor, both on the graph metrics and on the link prediction task
    corecore